Audited by
adriro
watermelon

Crmmmem e

Decembper

?

@yAudit

1 Review Summary

2

1.1
1.2
1.3

1.4
1.5

Protocol Overview e
Audit Scope
Risk Assessment Framework
1.3.1 Severity Classification
Key Findings o
Overall Assessment e

Audit Overview

2.1
2.2
2.3
24
2.5
2.6
2.7

2.8

2.9

2.10

2.11

Project Information
Audit Teamo
Audit Timeline e
Audit Resources
Critical Findings e
High Findings o . o
Medium Findings e
2.7.1 Prevent overflow in NAV accounting
Low Findings e
2.8.1 Check accounts are positive in closeGainLoss()
2.8.2 SyncManager.maxDeposit() uses incorrect denomination in
~canTransfer() call
2.8.3 maxRedeemClaims () should depend on the last redeem epoch
2.8.4 The approveRedeems() function can be non-payable
Gas Savings Findings
2.9.1 Gas savings in QueueManager L oL
Informational Findings
2.10.1 HubRegistry.updateCurrency() allows assigning non-registered cur-
rency to an existing pool L
2.10.2 Incorrect Nastspec documentation in OracleValuation
2.10.3 BaseTransferHook.trustedCall() ignores inner kind switch
2.10.4 BaseTransferHook.isDepositRequestOrIssuance() returns true

for mints to crosschainSource
Final Remarks

@yAudit

Centrifuge v3 implements a decentralized protocol for on-chain asset management. It provides
foundations for permissionless deployment and management of highly customizable tokenization
solutions.

This audit covers the v3.1 upgrade, which comprises changes to previously reviewed contracts
and entirely new ones, across 7 days of review.

src
core
F— hub
| |— Hub.sol
| — HubHandler.sol
| }— HubRegistry.sol
| L— ShareClassManager.sol
L— spoke
— Spoke.sol
L— vaultRegistry.sol

hooks

— BaseTransferHook.sol

— FreelyTransferable.sol
FreezeOnly.sol
FullRestrictions.sol

interfaces

— IFreezable.sol

L— IMemberlist.sol

— libraries

| L— UpdateRestrictionMessagelib.sol
L— RedemptionRestrictions.sol
managers

F— hub

| | interfaces

| | |— INAVManager.sol

| | L— ISimplePriceManager.sol
|

|

O TTT

— NAVManager.sol

L— SimplePriceManager.sol
L— spoke

L— QueueManager.sol
valuations
— interfaces
| L— IOraclevaluation.sol
— IdentityValuation.sol
L— Oraclevaluation.sol
vaults

I N

@yAudit

— BatchRequestManager.sol
L— SyncManager.sol

Severity Description Potential Impact
Critical Immediate threat to user funds or protocol | Direct loss of funds, protocol
integrity compromise
High Significant security risk requiring urgent | Potential fund loss, major
attention functionality disruption
Medium Important issue that should be addressed | Limited fund risk, functional-
ity concerns
Low Minor issue with minimal impact Best practice violations, minor
inefficiencies
Undetermined | Findings whose impact could not be fully | Varies based on actual severity
assessed within the time constraints of the
engagement. These issues may range from
low to critical severity, and although their
exact consequences remain uncertain, they
present a sufficient potential risk to war-
rant attention and remediation.
Gas Findings that can improve the gas effi- | Reduced transaction costs
ciency of the contracts.
Informational | Code quality and best practice recommen- | Improved maintainability and

dations

readability

Table 1: severity classification

eyAudit Centrifuge v3.1 Upgrade

1.4 Key Findings

Breakdown of Finding Impacts

Impact Level Count
M Critical 0
M High 0
Medium 1
B Low 4
M Informational 4

Figure 1: Distribution of security findings by impact level

1.5 Overall Assessment

Centrifuge’s v3.1 represents a mature, incrementally evolving protocol with a keen focus on its
security stance. The protocol demonstrates strong foundations and a commitment to being
secured through continuous auditing, conservative refactoring practices, and controlled feature
deployment that prioritizes code quality and readability alongside functionality.

2 Audit Overview

2.1 Project Information

Protocol Name: Centrifuge

Repository: https://github.com/centrifuge/protocol
Commit Hash: 6b95a72294704elc6c1cc03c0f614d599¢735a71
Commit URLs:

e 6b95a7a
« PR 606
e PR 626
e« PR 628
e PR 544
e PR 548
e PR 555
e« PR 563
e PR 650

PR 580

https://github.com/centrifuge/protocol/tree/6b95a7aa94704e1c6c1cc03c0f614d599c735a71
https://github.com/centrifuge/protocol-v3/pull/606
https://github.com/centrifuge/protocol-v3/pull/626
https://github.com/centrifuge/protocol-v3/pull/628
https://github.com/centrifuge/protocol-v3/pull/544
https://github.com/centrifuge/protocol-v3/pull/548
https://github.com/centrifuge/protocol-v3/pull/555
https://github.com/centrifuge/protocol-v3/pull/563
https://github.com/centrifuge/protocol-v3/pull/650
https://github.com/centrifuge/protocol-v3/pull/580

eyAudit Centrifuge v3.1 Upgrade

PR 346
« PR 615
« PR 595
« PR 667
PR 659
« PR 675

o« PR 642

2.2 Audit Team

adriro, watermelon

2.3 Audit Timeline

The audit was conducted from October 6 to 14, 2025.
2.4 Audit Resources

Code repositories and documentation

2.5 Critical Findings
None.
2.6 High Findings

None.

2.7 Medium Findings

2.7.1 Prevent overflow in NAV accounting

Technical Details

The calculation of the NAV is given by the netAssetValue() function.

1 213: return equity + gain - loss - liability;

If liabilities exceed the adjusted equity, the calculation may overflow. This can cause a revert in
the path submitting snapshots to the Hub, which are linked to the NAVManager.

Impact
Medium. The issue can block updates to the Hub for as long as the calculation overflows.

— 5

https://github.com/centrifuge/protocol-v3/pull/346
https://github.com/centrifuge/protocol-v3/pull/615
https://github.com/centrifuge/protocol-v3/pull/595
https://github.com/centrifuge/protocol-v3/pull/667
https://github.com/centrifuge/protocol-v3/pull/659
https://github.com/centrifuge/protocol-v3/pull/675
https://github.com/centrifuge/protocol-v3/pull/642
https://github.com/centrifuge/protocol-v3/blob/6b95a7aa94704e1c6c1cc03c0f614d599c735a71/src/managers/hub/NAVManager.sol#L205

eyAudit Centrifuge v3.1 Upgrade

Recommendation

Consider clamping the calculation to zero to avoid the revert.
Note that this could also skew the final NAV after being aggregated in the SimplePriceManager
contract.

Developer Response
Fixed by PR#708.

2.8 Low Findings

2.8.1 Check accounts are positive in closeGainLoss()

Technical Details

The implementation of closeGainlLoss() ignores the isPositive return value when
fetching the current state of the gain and loss accounts.

1 176: (, uint128 gainValue)
2 177: (, uint128 lossValue)

accounting.accountValue(poolId, gainAccount);
accounting.accountValue(poolId, lossAccount);

The function then proceeds to adjust the equity account based on these values. If there are
gains, it debits the gain account and credits the equity. If there are losses, it credits the loss
account (debit normal) and debits the equity.

Impact
Low. The accounting would be incorrect if the returned values are not positive.
Recommendation

Given the implementation assumptions, consider checking that the returned values are indeed
positive.

Developer Response

Fixed in PR#A728.

2.8.2 SyncManager.maxDeposit() uses incorrect denomination in _canTransfer() call

PR#675 introduces changes for SyncManager.maxMint() and

SyncManager.maxDeposit() functions to take into account potential transfer restrictions
imposed by a vault’s share token’s hooks.

https://github.com/centrifuge/protocol/pull/708
https://github.com/centrifuge/protocol-v3/blob/6b95a7aa94704e1c6c1cc03c0f614d599c735a71/src/managers/hub/NAVManager.sol#L169
https://github.com/centrifuge/protocol/pull/728
https://github.com/centrifuge/protocol/pull/675
https://github.com/centrifuge/protocol/blob/727c8e97ed4efbefd982bfb8bc7ddcc761f90657/src/vaults/SyncManager.sol#L142-L149
https://github.com/centrifuge/protocol/blob/727c8e97ed4efbefd982bfb8bc7ddcc761f90657/src/vaults/SyncManager.sol#L151-L156

eyAudit Centrifuge v3.1 Upgrade

Technical Details

The current SyncManager.maxDeposit() implementation passes the result of
SyncManager. maxDeposit , which is an amount denominated in a vault’s asset, as a
parameter in a call to SyncManager. canTransfer() , which expects an amount of vault
shares.

Impact

Low. While current ITransferHook implementations do not impose transfer restrictions
based on the amount of share tokens being transferred, passing an asset amount instead of a
share amount may hinder correct functionality in future implementations.

Recommendation

Calculate the amount of corresponding shares using convertToShares(vault , amount) as
is done within SyncManager.maxMint() .

Developer Response

Fixed by PR#723.

2.8.3 maxRedeemClaims() should depend on the last redeem epoch

Technical Details

The refactored maxRedeemClaims() function in BatchRequestManager uses the revoke field
from the stored Epochld struct, but it should take the redeem value instead.

Impact

Low.

Recommendation

Change the revoke field for the redeem field.

Developer Response

Fixed by PR#720, which actually changes maxDepositClaims to use epochId[..].issue
instead of *.deposit because otherwise maxDepositClaims returns one claimable epoch
after approveDeposits while notifyDeposit fails with IssuanceRequired as long as

the issuance is missing (i.e., epochId.issue < epochId.deposit). So before this fix, it
incorrectly signals a possible deposit claim.

https://github.com/centrifuge/protocol/blob/727c8e97ed4efbefd982bfb8bc7ddcc761f90657/src/vaults/SyncManager.sol#L215-L230
https://github.com/centrifuge/protocol/blob/727c8e97ed4efbefd982bfb8bc7ddcc761f90657/src/vaults/SyncManager.sol#L257-L260
https://github.com/centrifuge/protocol/pull/723
https://github.com/centrifuge/protocol/pull/720

eyAudit Centrifuge v3.1 Upgrade

2.8.4 The approveRedeems() function can be non-payable

Technical Details

The approveRedeems () function doesn’t need to be payable since it doesn’t dispatch a
message.

Impact

Low.

Recommendation

Remove the payable modifier.
Developer Response

Fixed in PR#A721.

2.9 Gas Savings Findings

2.9.1 Gas savings in QueueManager

Technical Details

The expression to check if the delay has elapsed can be simplified to the third sub-expression.

1 74: require(

2 75: sc.lastSync == 0 || sc.minDelay == 0 || block.timestamp >= sc.lastSync +
sc.minDelay, MinDelayNotElapsed()

3 76:)

For the duplicate check in the assetIds array, the scId argument can be removed, as this is
constant for all elements. The validation can be simplified by ensuring asset IDs are in
ascending order instead of using temporal storage. The check can also be removed because
calling submitQueuedAssets() would blank deposits and withdrawals, causing the same asset
ID to be skipped if repeated.

1 80: for (uint256 i = 0; i < assetlds.length; i++) {

> 81: bytes32 key = keccak256(abi.encode(scId.raw(), assetIds[i].raw()));

3 82: if (TransientStoragelLib.tloadBool(key)) continue; // Skip duplicate

4 83: TransientStoragelLib.tstore(key, true);

5 84:

6 85: // Check if valid

7 86: (uint128 deposits, uintl28 withdrawals) = balanceSheet.queuedAssets (
poolId, scId, assetIds[i]);
87: if (deposits > 0 || withdrawals > 0) {

9 88: balanceSheet.submitQueuedAssets(poolIld, scId, assetIds[i], sc.
extraGasLimit, address(0));

10 89: validCount++;

11 90: }

12 91: }

https://github.com/centrifuge/protocol-v3/blob/6b95a7aa94704e1c6c1cc03c0f614d599c735a71/src/vaults/BatchRequestManager.sol#L241
https://github.com/centrifuge/protocol/pull/721

eyAudit Centrifuge v3.1 Upgrade

Additionally, the call to queuedShares() can be moved below the assets loop to fetch the
updated value of queuedAssetCounter instead of tracking the validCount and then
comparing it against the cached value of queuedAssetCounter .

Impact

Gas savings.

Recommendation

Consider implementing the recommended suggestions.
Developer Response

Fixed in PR#726.

2.10 Informational Findings

2.10.1 HubRegistry.updateCurrency() allows assigning non-registered currency to an

existing pool

HubRegistry.updateCurrency may be used by an authorized address to update the
HubRegistry.currency mapping.

Technical Details

The method fails to ensure that the new currency being linked to a given poolId has
been previously registered via HubRegistry.registerAsset .

Impact

Informational.

Recommendation

Ensure currency has been registered:

@@ -87,6 +89,7 @@ contract HubRegistry is Auth, IHubRegistry {
function updateCurrency(PoolId poolId , AssetId currency) external auth {
require(exists(poolId), NonExistingPool(poolId));
require(!currency .isNull(), EmptyCurrency());
+ require(isRegistered(currency));

UuA W N e

7 currency[poolId] = currency_;

https://github.com/centrifuge/protocol/pull/726
https://github.com/centrifuge/protocol/blob/6b95a7aa94704e1c6c1cc03c0f614d599c735a71/src/core/hub/HubRegistry.sol#L87-L94
https://github.com/centrifuge/protocol/blob/6b95a7aa94704e1c6c1cc03c0f614d599c735a71/src/core/hub/HubRegistry.sol#L22
https://github.com/centrifuge/protocol/blob/6b95a7aa94704e1c6c1cc03c0f614d599c735a71/src/core/hub/HubRegistry.sol#L34-L40

eyAudit Centrifuge v3.1 Upgrade

Developer Response

Fixed as recommended in PR#724.

2.10.2 Incorrect Nastspec documentation in OracleValuation

OracleValuation.sol provides an implementation for trusted price oracles to update asset prices.

Technical Details

The comments at OracleValuation.sol#1.20-1.22 indicate that, to utilize the highlighted contract,
developers must use hub.updateFeeder() . While Hub.sol doesn’t implement such method,
the correct way to integrate the contract is by using Holdings.updateValuation .

Impact

Informational.

Recommendation

Correct the documentation as shown.

Developer Response

Fixed in PR#725.

2.10.3 BaseTransferHook.trustedCall() ignores inner kind switch

Technical Details

The implementation of trustedCall() in BaseTransferHook doesn’t switch on the kind
field of the UpdateContractUpdateAddress struct, treating all messages as updates to the
manager.

Impact

Informational.

Recommendation

Check if kind equals some constant and revert if not.

https://github.com/centrifuge/protocol/pull/724
https://github.com/centrifuge/protocol/blob/6b95a7aa94704e1c6c1cc03c0f614d599c735a71/src/valuations/OracleValuation.sol
https://github.com/centrifuge/protocol/blob/6b95a7aa94704e1c6c1cc03c0f614d599c735a71/src/valuations/OracleValuation.sol#L20-L22
https://github.com/centrifuge/protocol/blob/6b95a7aa94704e1c6c1cc03c0f614d599c735a71/src/core/hub/Holdings.sol#L81-L90
https://github.com/centrifuge/protocol/pull/725
https://github.com/centrifuge/protocol-v3/blob/6b95a7aa94704e1c6c1cc03c0f614d599c735a71/src/hooks/BaseTransferHook.sol#L161

eyAudit Centrifuge v3.1 Upgrade

1 UpdateContractMessagelLib.UpdateContractUpdateAddress memory m =

2 UpdateContractMessagelLib.deserializeUpdateContractUpdateAddress(payload);
4 if (m.kind == "manager") {

5 address token = address(spoke.shareToken(poolId, scId));

6 require(token != address(0), ShareTokenDoesNotExist());

8 manager[token] [m.what.toAddress()] = m.isEnabled;

9 } else {

10 revert UnknownUpdateContractKind();

1}

Developer Response

Fixed in PR#715.

2.10.4 BaseTransferHook.isDepositRequestOrIssuance() returns true for mints to

crosschainSource

BaseTransferHook.isDepositRequestOrIssuance() may be used within an

ITransferHook implementation to capture and execute arbitrary logic when vault share
tokens are minted to an address different than BaseTransferHook.depositTarget .

Technical Details

During a cross-chain transfer’s delivery on the target chain, share tokens are first minted into
the Spoke contract and then transferred to the recipient: link.

Given that the Spoke contract is assigned to BaseTransferHook.crosschainSource ,
which is known to be different from BaseTransferHook.depositTarget , the mentioned

predicate will return true during the share token mint.
Impact

Informational.

Recommendation

Modify the mentioned function to not return true when to == crosschainSource :

1 @@ -109,23 +109,29 @@ abstract contract BaseTransferHook is Auth, IMemberlist,
IFreezable, ITransferHo
) public view virtual returns (bool);

N

4 function isDepositRequestOrIssuance(address from, address to) public view
returns (bool) {

5 - return from == address(0) && to !'= depositTarget;

6 + return from == address(0) && to '= depositTarget && to !=
crosschainSource;

7 }

11

https://github.com/centrifuge/protocol/pull/715
https://github.com/centrifuge/protocol/blob/6b95a7aa94704e1c6c1cc03c0f614d599c735a71/src/hooks/BaseTransferHook.sol#L111-L113
https://github.com/centrifuge/protocol/blob/6b95a7aa94704e1c6c1cc03c0f614d599c735a71/src/core/spoke/Spoke.sol#L255-L256

e yAudit Centrifuge v3.1 Upgrade

Developer Response
Fixed in PR#725.

2.11 Final Remarks

The audit focused on both incremental updates to core and hook-related contracts from version
3.0.1, as well as new contracts introduced with version 3.1.

Updates to pre-existing contracts imply no significant change in the system’s business logic;
instead, they involve a refactor to improve the codebase’s readability and simplicity significantly.
Within the refactor, one minor issue was identified that caused an incorrect epoch to be used in
the calculations for the maximum claimable redeem epoch for a given investor.

The contracts introduced in version 3.1 aim to fully implement pool net asset value calculations
on-chain, using a new IValuation implementation that accepts asset price submissions from
authorized accounts, along with two new ISnapshotHook implementations. Within these
contracts, one medium-severity issue was identified: net asset value calculations could trigger an
uncaught negative overflow, leading to failures in transactions that submit snapshot updates to
the Hub.

12

https://github.com/centrifuge/protocol/pull/725

	Review Summary
	Protocol Overview
	Audit Scope
	Risk Assessment Framework
	Severity Classification

	Key Findings
	Overall Assessment

	Audit Overview
	Project Information
	Audit Team
	Audit Timeline
	Audit Resources
	Critical Findings
	High Findings
	Medium Findings
	Prevent overflow in NAV accounting

	Low Findings
	Check accounts are positive in codebgcloseGainLoss()
	codebgSyncManager.maxDeposit() uses incorrect denomination in codebg_canTransfer() call
	codebgmaxRedeemClaims() should depend on the last codebgredeem epoch
	The codebgapproveRedeems() function can be non-payable

	Gas Savings Findings
	Gas savings in QueueManager

	Informational Findings
	codebgHubRegistry.updateCurrency() allows assigning non-registered currency to an existing pool
	Incorrect Nastspec documentation in codebgOracleValuation
	codebgBaseTransferHook.trustedCall() ignores inner kind switch
	codebgBaseTransferHook.isDepositRequestOrIssuance() returns codebgtrue for mints to codebgcrosschainSource

	Final Remarks

