
Prepared for
Twyne

Audited by
HHK
adriro

January 15, 2026

Twyne Aave Integration
Smart Contract Security Assessment

Twyne Aave Integration

Contents

1 Review Summary 2
1.1 Protocol Overview . 2
1.2 Audit Scope . 2
1.3 Risk Assessment Framework . 2

1.3.1 Severity Classification . 2
1.4 Key Findings . 3
1.5 Overall Assessment . 3

2 Audit Overview 4
2.1 Project Information . 4
2.2 Audit Team . 4
2.3 Audit Timeline . 4
2.4 Audit Resources . 4
2.5 Critical Findings . 4
2.6 High Findings . 4
2.7 Medium Findings . 4

2.7.1 Redemption may fail due to an unavailable aToken backing 4
2.7.2 Broken reward accounting in wrapped aToken contract 5

2.8 Low Findings . 6
2.8.1 Pausing does not affect rebalanceATokens_CV() 6
2.8.2 Stale liquidation threshold if E-mode gets disabled 7
2.8.3 Insufficient precision in categoryId mapping for future AAVE market

integrations . 7
2.9 Gas Savings Findings . 8

2.9.1 Avoid unnecessary zero transfer in rebalanceATokens_CV() 8
2.10 Informational Findings . 9

2.10.1 Overridden max* functions break ERC-4626 specifications 9
2.10.2 Provide multiple factory functions instead of switching on VaultType . . 9
2.10.3 skim() can use the modifier onlyBorrowerAndNotExtLiquidated . . 10
2.10.4 Missing event in setCategoryId() . 10
2.10.5 Update natspec documentation . 11
2.10.6 Inconsistent contract versions . 11
2.10.7 Unused AAVE_POOL variable . 12

3 Final remarks 12

— 1 —

Twyne Aave Integration

1 Review Summary

1.1 Protocol Overview

Twyne is a credit delegation protocol that lets borrowers rent unused borrowing power from
other lenders to boost their Liquidation LTV. Lenders earn additional yield while borrowers get
to ramp up their leverage or insulate their debt.

1.2 Audit Scope

This audit covers 9 smart contracts totaling approximately 1150 lines of code across 3.5 days of
review.

0xTwyne/twyne-contracts/src

├── Periphery

│ └── AaveV3Wrapper.sol

├── TwyneFactory

│ └── CollateralVaultFactory.sol

└── twyne

├── AaveV3ATokenWrapperOracle.sol

├── AaveV3CollateralVault.sol

├── CollateralVaultBase.sol

├── EulerCollateralVault.sol

└── VaultManager.sol

0xTwyne/aave-v3-aToken-wrapper/src

├── AaveV3ATokenWrapper.sol

└── CustomERC4626StataTokenUpgradeable.sol

1.3 Risk Assessment Framework

1.3.1 Severity Classification

— 2 —

Twyne Aave Integration

Severity Description Potential Impact
Critical Immediate threat to user funds or protocol

integrity
Direct loss of funds, protocol
compromise

High Significant security risk requiring urgent
attention

Potential fund loss, major
functionality disruption

Medium Important issue that should be addressed Limited fund risk, functional-
ity concerns

Low Minor issue with minimal impact Best practice violations, minor
inefficiencies

Undetermined Findings whose impact could not be fully
assessed within the time constraints of the
engagement. These issues may range from
low to critical severity, and although their
exact consequences remain uncertain, they
present a sufficient potential risk to war-
rant attention and remediation.

Varies based on actual severity

Gas Findings that can improve the gas effi-
ciency of the contracts.

Increased transaction costs

Informational Code quality and best practice recommen-
dations

Reduced maintainability and
readability

Table 1: severity classification

1.4 Key Findings

Breakdown of Finding Impacts

Impact Level Count

Critical 0

High 0

Medium 2

Low 3

Informational 7

Figure 1: Distribution of security findings by impact level

1.5 Overall Assessment

The audit of Twyne’s Aave V3 integration identified no critical or high-severity vulnerabilities,
indicating a solid implementation that maintains the security standards of the protocol’s
foundation. Two medium-severity findings were discovered, primarily related to operational
issues under high utilization scenarios and incompatibilities between Aave’s reward mechanism
and Twyne’s multi-vault architecture.

— 3 —

Twyne Aave Integration

2 Audit Overview

2.1 Project Information

Protocol Name: Twyne
Repositories:

• https://github.com/0xTwyne/twyne-contracts

• https://github.com/0xTwyne/aave-v3-aToken-wrapper

Commit URLs:

• d83d60155f64a1f0fcd98a813038f6b37d2dd101

• ae1ca5641f7c148f97084640017cf6140a899183

2.2 Audit Team

HHK, adriro

2.3 Audit Timeline

The audit was conducted from November 3 to 6, 2025.

2.4 Audit Resources

Code repositories and documentation

2.5 Critical Findings

None.

2.6 High Findings

None.

2.7 Medium Findings

2.7.1 Redemption may fail due to an unavailable aToken backing

Technical Details

In redeemUnderlying() and handleExternalLiquidation() , the functions attempt to
redeem wrapped aTokens for underlying assets and transfer them to the user. However, during
periods of high utilization of the intermediate pool, most aTokens may be transferred to
collateral vaults and are unavailable on the wrapped contract.

— 4 —

https://github.com/0xTwyne/twyne-contracts/commit/d83d60155f64a1f0fcd98a813038f6b37d2dd101
https://github.com/0xTwyne/aave-v3-aToken-wrapper/commit/ae1ca5641f7c148f97084640017cf6140a899183
https://github.com/0xTwyne/twyne-contracts/blob/d83d60155f64a1f0fcd98a813038f6b37d2dd101/src/twyne/CollateralVaultBase.sol#L342-L342
https://github.com/0xTwyne/twyne-contracts/blob/d83d60155f64a1f0fcd98a813038f6b37d2dd101/src/twyne/AaveV3CollateralVault.sol#L212

Twyne Aave Integration

Both functions call redeem() before rebalanceATokens_CV() , which requires the wrapped
tokens to be redeemed without first retrieving aTokens from the collateral vault. During high
intermediate vault utilization, this causes redemption to fail and the transaction to revert, even
though the tokens are technically available on the collateral vault.

Impact

Medium. redeemUnderlying() and handleExternalLiquidation() may revert when
intermediate vault utilization is high.

Recommendation

Call rebalanceATokens_CV() before redeem() in handleExternalLiquidation() .
Override redeemUnderlying() in the AAVE integration vault and call
_handleExcessCredit() before redeem() .

Developer Response

Fixed in PR#189.

2.7.2 Broken reward accounting in wrapped aToken contract

The wrapped aToken contract’s reward accounting system is incompatible with the protocol’s
architecture, leading to lost farming rewards and incorrect reward distribution.

Technical Details

When users borrow wrapped aTokens from the intermediate vault, rebalanceATokens_CV()

unwraps them on the collateral vault so AAVE recognizes the collateral. This leaves the
wrapped aToken contract virtually backed rather than physically backed, as the underlying
aTokens are held by the collateral vault.
The forked StataToken reward accounting assumes 100% of aTokens remain in the wrapped
contract. However, aTokens used for borrowing are held by the collateral vault, which receives
their farming rewards.
The contract ERC20AaveLMUpgradeable that is inherited by the wrapped aToken uses the
INCENTIVES_CONTROLLER ’s getAssetIndex() function to determine rewards. When
looking at the INCENTIVES_CONTROLLER function code, we can observe that this value is
determined using the total value of the aToken.

1 _getAssetIndex(

2 rewardData,

3 IScaledBalanceToken(asset).scaledTotalSupply(),

4 10 ** _assets[asset].decimals

5);

This creates several issues:

• The wrapped contract incorrectly tracks rewards for aTokens it no longer holds
• Collateral vaults receive farming rewards but cannot claim them

— 5 —

https://github.com/0xTwyne/twyne-contracts/pull/189/files
https://github.com/0xTwyne/aave-v3-aToken-wrapper/blob/ae1ca5641f7c148f97084640017cf6140a899183/src/AaveV3ATokenWrapper.sol#L131-L131
https://github.com/0xTwyne/aave-v3-aToken-wrapper/blob/ae1ca5641f7c148f97084640017cf6140a899183/lib/aave-v3-origin/src/contracts/extensions/stata-token/ERC20AaveLMUpgradeable.sol#L119-L119
https://github.com/aave-dao/aave-v3-origin/blob/f53f03cf95ea5c3528016e849bf98210abdd5bcb/src/contracts/rewards/RewardsDistributor.sol#L487

Twyne Aave Integration

• Users claiming rewards from the wrapped contract receive inflated amounts on a
first-come, first-served basis

• Wrapped aTokens lent on the intermediate vault generate rewards that the vault cannot
claim

Impact

Medium. The farming rewards system is broken, resulting in lost rewards and incorrect
distributions.

Recommendation

Remove the current farming reward system from the wrapped aToken contract.
Instead, implement an onlyOwner() function allowing the Twyne admin to claim farming
rewards from both the wrapped contract and collateral vaults. Consider redistributing rewards
through a simpler system, such as a Merkle tree, that is compatible with intermediate vaults.

Developer Response

Fixed in PR#2 & PR#194.

2.8 Low Findings

2.8.1 Pausing does not affect rebalanceATokens_CV()

Technical Details

In the AaveV3ATokenWrapper contract, the rebalanceATokens_CV() is not affected by the
emergency pause since it doesn’t rely on _update() .

Impact

Low.

Recommendation

Add the whenNotPaused modifier to enable pauses on this functionality.

Developer Response

Fixed in PR#2.

— 6 —

https://github.com/0xTwyne/aave-v3-aToken-wrapper/pull/2
https://github.com/0xTwyne/twyne-contracts/pull/194
https://github.com/0xTwyne/aave-v3-aToken-wrapper/blob/ae1ca5641f7c148f97084640017cf6140a899183/src/AaveV3ATokenWrapper.sol#L131
https://github.com/0xTwyne/aave-v3-aToken-wrapper/pull/2

Twyne Aave Integration

2.8.2 Stale liquidation threshold if E-mode gets disabled

Technical Details

When querying the external liquidation LTV, the implementation of _getAaveLiqLTV() uses
the corresponding E-mode liquidation threshold if a category is configured in the vault.

1 102: function _getAaveLiqLTV() internal view returns (uint) {

2 103: if (categoryId == 0) {

3 104: (,,uint currentLiquidationThreshold,,,,,,,) = aaveDataProvider.

getReserveConfigurationData(underlyingAsset);

4 105: return currentLiquidationThreshold;

5 106: } else {

6 107: return IAaveV3Pool(targetVault).getEModeCategoryCollateralConfig(

categoryId).liquidationThreshold;

7 108: }

8 109: }

However, Aave internally checks if the selected E-mode is actually enabled for the asset. The
function calculateUserAccountData() checks if the collateral is associated with the
borrower’s E-mode to apply the category configuration.

1 121: vars.isInEModeCategory =

2 122: params.userEModeCategory != 0 &&

3 123: EModeConfiguration.isReserveEnabledOnBitmap(vars.

eModeCollateralBitmap, vars.i);

While it is expected that Twyne configures categories correctly, these settings can be modified
at Aave after a vault has been created.

Impact

Low. The liquidation threshold might diverge in the unlikely event that an existing category is
disabled.

Recommendation

Consider also checking if the asset is enabled for the given category to align the implementation
with Aave’s getUserAccountData() .

Developer Response

Fixed in PR#193.

2.8.3 Insufficient precision in categoryId mapping for future AAVE market integrations

The categoryId mapping may lack precision for future AAVE market integrations on the
same chain.

— 7 —

https://github.com/0xTwyne/twyne-contracts/blob/d83d60155f64a1f0fcd98a813038f6b37d2dd101/src/twyne/AaveV3CollateralVault.sol#L102
https://github.com/aave-dao/aave-v3-origin/blob/f53f03cf95ea5c3528016e849bf98210abdd5bcb/src/contracts/protocol/libraries/logic/GenericLogic.sol#L67
https://github.com/0xTwyne/twyne-contracts/pull/193/files

Twyne Aave Integration

Technical Details

The CollateralVaultFactory has an internal mapping categoryId that can be set
through setCategoryId() by the owner. This mapping defines which category ID new AAVE
collateral vaults should use based on collateral and target asset. Category 0 uses the default
LTV, while other categories enable eMode for higher LTV on specific assets.
The contract doesn’t account for AAVE having multiple markets on some chains. For example,
mainnet has Core, Prime, Horizon RWA, and EtherFi markets. While Twyne currently targets
only Core, future support for other AAVE markets would cause the factory to use the same
category ID for all collateral/target asset pairs across different markets, potentially resulting in
invalid IDs or unintended categories.

Impact

Low. Future AAVE integrations on the same chain may cause issues.

Recommendation

Add a targetVault parameter to the mapping:

1 - mapping(address collateralAsset => mapping(address targetAsset => uint8

categoryId)) public categoryId;

2 + mapping(address targetVault => mapping(address collateralAsset => mapping(

address targetAsset => uint8 categoryId))) public categoryId;

And update the setCategoryId() function.

Developer Response

Fixed in PR#191.

2.9 Gas Savings Findings

2.9.1 Avoid unnecessary zero transfer in rebalanceATokens_CV()

Technical Details

In rebalanceATokens_CV() , the function transfers aTokens to the collateral vault when
shares >= actualScaledBalance . When both values are equal, this results in a zero
transfer operation.

Impact

Gas savings.

Recommendation

Replace the else condition with else if (shares > actualScaledBalance) .

— 8 —

https://github.com/0xTwyne/twyne-contracts/blob/d83d60155f64a1f0fcd98a813038f6b37d2dd101/src/TwyneFactory/CollateralVaultFactory.sol#L27
https://github.com/0xTwyne/twyne-contracts/pull/191
https://github.com/0xTwyne/aave-v3-aToken-wrapper/blob/ae1ca5641f7c148f97084640017cf6140a899183/src/AaveV3ATokenWrapper.sol#L131

Twyne Aave Integration

Developer Response

Fixed in commit 2f0f014.

2.10 Informational Findings

2.10.1 Overridden max* functions break ERC-4626 specifications

Technical Details

The CustomERC4626StataTokenUpgradeable is a copy of Aave’s
ERC4626StataTokenUpgradeable with the max* functions re-defined to skip checks and allow
any amount. While this saves gas, it should be noted that it breaks the ERC-4626 standard.

Impact

Informational.

Recommendation

Notify integrators about this behavior.

Developer Response

Acknowledged. This wrapper is an internal complexity.

2.10.2 Provide multiple factory functions instead of switching on VaultType

Technical Details

The implementation of createCollateralVault() uses a VaultType enum to determine the
creation logic between Euler and Aave.
This can lead to a confusing interface, given that the creation logic differs between the two
protocols. One example is the _targetAsset parameter, which is required for Aave but not
used in Euler.

Impact

Informational.

Recommendation

Split the creation functionality between separate functions, such as
createEulerCollateralVault() and createAaveCollateralVault() .

— 9 —

https://github.com/0xTwyne/aave-v3-aToken-wrapper/pull/2/files#diff-2f0f014171b9ecfef7ea6d88d719e536d69d3098c36be4c3aa19559f18db9015L138
https://github.com/0xTwyne/twyne-contracts/blob/d83d60155f64a1f0fcd98a813038f6b37d2dd101/src/TwyneFactory/CollateralVaultFactory.sol#L104

Twyne Aave Integration

Developer Response

Acknowledged.

2.10.3 skim() can use the modifier onlyBorrowerAndNotExtLiquidated

Technical Details

Given the refactor of _isNotExternallyLiquidated() , the skim() function can avoid
duplicating the validation logic, as there is no benefit in re-using cached variables.

Impact

Informational.

Recommendation

1 - function skim() external callThroughEVC whenNotPaused nonReentrant {

2 - // copied from onlyBorrowerAndNotExtLiquidated modifier to cache

balanceOf

3 - require(_msgSender() == borrower, ReceiverNotBorrower());

4 - require(_isNotExternallyLiquidated(), ExternallyLiquidated());

5 + function skim() external onlyBorrowerAndNotExtLiquidated whenNotPaused

nonReentrant {

Developer Response

Fixed in PR#192.

2.10.4 Missing event in setCategoryId()

Technical Details

The setCategoryId() function doesn’t emit an event when updating the category
configuration.

Impact

Informational.

Recommendation

Emit an event in setCategoryId() .

— 10 —

https://github.com/0xTwyne/twyne-contracts/blob/d83d60155f64a1f0fcd98a813038f6b37d2dd101/src/twyne/CollateralVaultBase.sol#L300
https://github.com/0xTwyne/twyne-contracts/pull/192
https://github.com/0xTwyne/twyne-contracts/blob/d83d60155f64a1f0fcd98a813038f6b37d2dd101/src/TwyneFactory/CollateralVaultFactory.sol#L84

Twyne Aave Integration

Developer Response

Fixed in PR#192.

2.10.5 Update natspec documentation

Technical Details

Natspec can be updated throughout the code to improve documentation:

• Natspec for handleExternalLiquidation() can be changed for AAVE integration:

1 - to be called if the vault is liquidated by Euler

2 + to be called if the vault is liquidated by AAVE

• Missing natspec for setOracleResolvedVaultForOracleRouter() .
• Missing VaultType _vaultType natspec in createCollateralVault() .

Impact

Informational.

Recommendation

Update the natspec.

Developer Response

Fixed in PR#192.

2.10.6 Inconsistent contract versions

Technical Details

The CollateralVaultFactory contract was updated to return 2 as its version, but the
VaultManager and EulerCollateralVault contracts still return 1 in version() despite
being updated since the last deployment.

Impact

Informational. Inconsistent versioning between contracts.

Recommendation

Align versions for contracts that were previously deployed and then modified.

— 11 —

https://github.com/0xTwyne/twyne-contracts/pull/192
https://github.com/0xTwyne/twyne-contracts/blob/d83d60155f64a1f0fcd98a813038f6b37d2dd101/src/twyne/AaveV3CollateralVault.sol#L212
https://github.com/0xTwyne/twyne-contracts/blob/d83d60155f64a1f0fcd98a813038f6b37d2dd101/src/twyne/VaultManager.sol#L177
https://github.com/0xTwyne/twyne-contracts/blob/d83d60155f64a1f0fcd98a813038f6b37d2dd101/src/TwyneFactory/CollateralVaultFactory.sol#L104
https://github.com/0xTwyne/twyne-contracts/pull/192
https://github.com/0xTwyne/twyne-contracts/blob/d83d60155f64a1f0fcd98a813038f6b37d2dd101/src/TwyneFactory/CollateralVaultFactory.sol#L57-L57
https://github.com/0xTwyne/twyne-contracts/blob/d83d60155f64a1f0fcd98a813038f6b37d2dd101/src/twyne/VaultManager.sol#L62-L62
https://github.com/0xTwyne/twyne-contracts/blob/d83d60155f64a1f0fcd98a813038f6b37d2dd101/src/twyne/EulerCollateralVault.sol#L53-L53

Twyne Aave Integration

Developer Response

Fixed in PR#192.

2.10.7 Unused AAVE_POOL variable

Technical Details

The variable AAVE_POOL is never used in the AaveV3Wrapper contract.

Impact

Informational.

Recommendation

Remove the variable.

Developer Response

Fixed in PR#192.

3 Final remarks

The review focused on the integration of Aave V3 collateral vaults and the wrapped aToken
system, which extends the protocol’s capabilities beyond its original Euler Finance
implementation.
The codebase maintains the architectural strengths observed in prior audits. The Aave
integration follows similar design patterns while adapting to Aave’s specific mechanics,
including E-mode categories and liquidation thresholds.
No critical or high-severity vulnerabilities were identified during this review. The wrapped
aToken reward accounting issue is particularly noteworthy, although it doesn’t affect the
protocol’s core mechanics. The original implementation assumes tokens remain within a single
contract, but Twyne’s design requires tokens to move between the wrapper and collateral vaults.
This architectural mismatch required a rework of the reward distribution system, which
ultimately led to a more straightforward implementation.
The team demonstrated exceptional responsiveness in addressing all identified issues, with the
codebase showing maturity and thoughtful design decisions throughout the integration.
Fixes and code changes related to this audit were reviewed up to commit
452e2b142222b6b54ee87e0df2ad89cc755fdeea.

— 12 —

https://github.com/0xTwyne/twyne-contracts/pull/192
https://github.com/0xTwyne/twyne-contracts/blob/d83d60155f64a1f0fcd98a813038f6b37d2dd101/src/Periphery/AaveV3Wrapper.sol#L31
https://github.com/0xTwyne/twyne-contracts/pull/192
https://github.com/0xTwyne/twyne-contracts/commit/452e2b142222b6b54ee87e0df2ad89cc755fdeea

	Review Summary
	Protocol Overview
	Audit Scope
	Risk Assessment Framework
	Severity Classification

	Key Findings
	Overall Assessment

	Audit Overview
	Project Information
	Audit Team
	Audit Timeline
	Audit Resources
	Critical Findings
	High Findings
	Medium Findings
	Redemption may fail due to an unavailable aToken backing
	Broken reward accounting in wrapped aToken contract

	Low Findings
	Pausing does not affect codebgrebalanceATokens_CV()
	Stale liquidation threshold if E-mode gets disabled
	Insufficient precision in codebgcategoryId mapping for future AAVE market integrations

	Gas Savings Findings
	Avoid unnecessary zero transfer in codebgrebalanceATokens_CV()

	Informational Findings
	Overridden codebgmax* functions break ERC-4626 specifications
	Provide multiple factory functions instead of switching on VaultType
	codebgskim() can use the modifier codebgonlyBorrowerAndNotExtLiquidated
	Missing event in codebgsetCategoryId()
	Update natspec documentation
	Inconsistent contract versions
	Unused codebgAAVE_POOL variable

	Final remarks

