Audited by
HHK

Watermelon

?

Crmmmem e

@yAudit

1 Review Summary

1.1 Protocol Overview e e
1.2 Audit Scope
1.3 Risk Assessment Framework

1.3.1 Severity Classification

1.4 Key Findings

1.5 Overall Assessment L e

2 Audit Overview

2.1 Project Information L
2.2 Audit Team
2.3 Audit Timeline e e
2.4 Audit Resources
2.5 Critical Findings L
2.6 High Findings
2.7 Medium Findings L
2.8 Low Findings
2.9 Gas Savings Findings

2.9.1 Cache reservedBy mapping to avoid duplicate storage reads

2.9.2 Salt reu

se check may be executed earlier to save gas in revert case

2.10 Informational Findings

2.10.1 Unused

named return parameter in AsyncRequestManager.maxMint . .

2.10.2 Outdated README references global escrow

2.10.3 Missing
2.10.4 Missing

event inside SubsidyManager
nastpec documentation for extraGasLimit param in

ISpoke.request

2.10.5 Missing
2.11 Final Remarks

event emission in BatchRequestManager.setEpochIds

@yAudit

Centrifuge v3.1 implements a decentralized protocol for on-chain asset management. It provides
foundations for permissionless deployment and management of highly customizable tokenization

solutions.

This audit covers 20 pull requests across 4 engineering days. The client’s pull requests were
reviewed in two separate batches: the first 16 pull requests were reviewed between December
3rd, 2025 and December 5th, 2025. The remaining 4 pull requests were submitted at a later
date by the client and reviewed by the yAudit team on January 16th, 2026.

Severity Description Potential Impact

Critical Immediate threat to user funds or protocol | Direct loss of funds, protocol
integrity compromise

High Significant security risk requiring urgent | Potential fund loss, major
attention functionality disruption

Medium Important issue that should be addressed | Limited fund risk, functional-

ity concerns
Low Minor issue with minimal impact Best practice violations, minor
inefficiencies

Undetermined | Findings whose impact could not be fully | Varies based on actual severity
assessed within the time constraints of the
engagement. These issues may range from
low to critical severity, and although their
exact consequences remain uncertain, they
present a sufficient potential risk to war-
rant attention and remediation.

Gas Findings that can improve the gas effi- | Increased transaction costs
ciency of the contracts.

Informational | Code quality and best practice recommen- | Reduced maintainability and
dations readability

Table 1: severity classification

eyAUdit Centrifuge v3.1 Fix Review

1.4 Key Findings

Breakdown of Finding Impacts

Impact Level Count

M Critical 0
¥ High 0
Medium 0
M Low 0
)

M Informational

Figure 1: Distribution of security findings by impact level

1.5 Overall Assessment

Centrifgue v3.1 represents a mature codebase with strong focus on its security stance. The fixes
implemented to address findings identified in Centrifuge v3.1’s audit competition were found to
be correctly implemented, with researchers identifying only minor gas optimizations and styling
recommendations to apply a final layer of polish to the codebase.

2 Audit Overview

2.1 Project Information

Protocol Name: Centrifuge
Repository: https://github.com/centrifuge/protocol-internal/
Commit Hashes:

o 34{f1£82806fb22680ef694eadca62fb86b62679

o 6b9d36eabeed8728486f377ea2766ad5cd233c555
Commit URLs:

e commit 34182

« PR 10

e PR 14

« PR 21

« PR 31

e PR 33

« PR 36

https://github.com/centrifuge/protocol-internal/tree/34ff1f82806fb22680ef694eadca62fb86b62679
https://github.com/centrifuge/protocol-internal/pull/10
https://github.com/centrifuge/protocol-internal/pull/14
https://github.com/centrifuge/protocol-internal/pull/21
https://github.com/centrifuge/protocol-internal/pull/31
https://github.com/centrifuge/protocol-internal/pull/33
https://github.com/centrifuge/protocol-internal/pull/36

eyAUdit Centrifuge v3.1 Fix Review

« PR 42
e PR 48
« PR 49
« PR 50
« PR 56
e PR 58
« PR 59
e PR 62
« PR 64
e PR 65
e commit 6b9d36ea
e PR 78
« PR 98
« PR 100

« PR 102

2.2 Audit Team

HHK, Watermelon

2.3 Audit Timeline

The audit was conducted from December 03, 2025 to January 18, 2026.

2.4 Audit Resources

Code repositories and documentation

2.5 Critical Findings

None.

2.6 High Findings

None.

2.7 Medium Findings

None.

https://github.com/centrifuge/protocol-internal/pull/42
https://github.com/centrifuge/protocol-internal/pull/48
https://github.com/centrifuge/protocol-internal/pull/49
https://github.com/centrifuge/protocol-internal/pull/50
https://github.com/centrifuge/protocol-internal/pull/56
https://github.com/centrifuge/protocol-internal/pull/58
https://github.com/centrifuge/protocol-internal/pull/59
https://github.com/centrifuge/protocol-internal/pull/62
https://github.com/centrifuge/protocol-internal/pull/64
https://github.com/centrifuge/protocol-internal/pull/65
https://github.com/centrifuge/protocol-internal/tree/6b9d36eabee48728486f377ea2766a5cd233c555
https://github.com/centrifuge/protocol-internal/pull/78
https://github.com/centrifuge/protocol-internal/pull/98
https://github.com/centrifuge/protocol-internal/pull/100
https://github.com/centrifuge/protocol-internal/pull/102

eyAUdit Centrifuge v3.1 Fix Review

2.8 Low Findings

None.

2.9 Gas Savings Findings

2.9.1 Cache reservedBy mapping to avoid duplicate storage reads

Technical Details

The reserve() and unreserve() functions load the reservedBy mapping twice when
they could load it once by declaring newReservedAmount earlier in the function.

Impact

Gas savings.

Recommendation

Declare newReservedAmount earlier and use it instead of incrementing.

1 function reserve(...) external auth {

2 + uint1l28 newReservedAmount = reservedBy[scId][caller][reason][asset][tokenId
] + value;

3 - reservedBy[scId][caller][reason][asset][tokenId] += value;

4 + reservedBy[scId][caller][reason][asset][tokenId] = newReservedAmount;

5 holding .reserved += value;

7 - uintl128 newReservedAmount = reservedBy[scId][caller][reason][asset][tokenId
I

8 emit IncreaseReserve(asset, tokenId, poollId, scId, caller, reason, value,
newReservedAmount) ;

o }

1 function unreserve(...) external auth {

2 + uintl28 newReservedAmount = reservedBy[scId][caller][reason][asset][tokenId
] - value;

3 - reservedBy[scId][caller][reason][asset][tokenId] -= value;

s + reservedBy[scId][caller][reason][asset][tokenId] = newReservedAmount;

5 holding .reserved -= value;

7 - uint128 newReservedAmount = reservedBy[scId][caller][reason][asset][tokenId
1;

8 emit DecreaseReserve(asset, tokenId, poollId, scId, caller, reason, value,
newReservedAmount) ;

s }

Developer Response

Fixed by 8Hefcfe.

https://github.com/centrifuge/protocol-internal/blob/34ff1f82806fb22680ef694eadca62fb86b62679/src/core/spoke/PoolEscrow.sol#L54-L54
https://github.com/centrifuge/protocol-internal/blob/34ff1f82806fb22680ef694eadca62fb86b62679/src/core/spoke/PoolEscrow.sol#L68-L68
https://github.com/centrifuge/protocol-internal/pull/75/commits/85efcfc9391241702489079405ad7ca1ea5be700

eyAUdit Centrifuge v3.1 Fix Review

2.9.2 Salt reuse check may be executed earlier to save gas in revert case

Technical Details

ShareClassManager.addShareClass now requires the salt parameter’s first 8 bytes to

match the provided poolId value, in order to prevent salt values previously used for a pool
from being used for a different pool.

The method also ensures that a given salt is used only once, by storing used values in its
ShareClassManager.salts mapping and checking a new salt against such set: if the

salt has already been used, a AlreadyUsedSalt error is returned.
Both checks may be moved to the beginning of the method, in order to marginally reduce the
gas consumed by the method in both unhappy paths.

Impact

Gas optimization.

Recommendation

Move the code related to the mentioned checks to the beginning of the method:

@@ -38,6 +38,10 @@ contract ShareClassManager is Auth, IShareClassManager {
auth
returns (ShareClassId scId)

PoolId prefixedPoolId = PoolId.wrap(uint64(bytes8(salt)));
require(poolld == prefixedPoolId, InvalidSalt());
require(!salts[salt], AlreadyUsedSalt());

O 0 N OO U A W N =
+ + + +

scId = previewNextShareClassId(poollId);

11 uint32 index = ++shareClassCount[poolId];
12 @@ -45,9 +49,6 @@ contract ShareClassManager is Auth, IShareClassManager {

14 ShareClassMetadata storage meta = updateMetadata(poolId, scId , name,
symbol) ;

6 - PoolId prefixedPoolId = PoolId.wrap(uint64(bytes8(salt)));

17 - require(poolIld == prefixedPoolId, InvalidSalt());

18 - require(!salts[salt], AlreadyUsedSalt());

19 salts[salt] = true;

20 meta.salt = salt;

Developer Response

Fixed by 9eb2a2d.

2.10 Informational Findings

https://github.com/centrifuge/protocol-internal/blob/34ff1f82806fb22680ef694eadca62fb86b62679/src/core/hub/ShareClassManager.sol#L36-L55
https://github.com/centrifuge/protocol-internal/blob/34ff1f82806fb22680ef694eadca62fb86b62679/src/core/hub/ShareClassManager.sol#L18
https://github.com/centrifuge/protocol-internal/commit/9eb2a2d73e2863bed6cdc854e1c50176e0d896ae

eyAUdit Centrifuge v3.1 Fix Review

2.10.1 Unused named return parameter in AsyncRequestManager.maxMint

Technical Details

AsyncRequestManager.maxMint defines the shares named return parameter but fails to
assign a value to it.

Impact

Informational.

Recommendation

Maintain consistency with the rest of the max* methods and assign the return value to
shares :

1 @@ -554,7 +554,7 @@ contract AsyncRequestManager is Auth, IAsyncRequestManager,
ITrustedContractUpda
2 if (! canTransfer(
vault , address(balanceSheet.escrow(vault .poolId())), user,
uint256 (investments[vault][user].maxMint)

4)) return 0;

5 - return uint256(investments[vault][user].maxMint);

6 + shares = uint256(investments[vault][user].maxMint);
7 }

9 /// @inheritdoc IRedeemManager

Developer Response

Fixed by 2706805.

2.10.2 Outdated README references global escrow

Technical Details

The vault README.md still mentions global escrow even though it has been replaced with
pool-specific escrow, which can be confusing for future auditors and integrators:

o "The vault enforces controller/owner validation for all operations and integrates with the
global escrow for asset custody”

o ’coordinating with BalanceSheet for share issuance/burning and the global escrow for
asset custody.”

e Also still present in some diagrams

Impact

Informational.

https://github.com/centrifuge/protocol-internal/blob/34ff1f82806fb22680ef694eadca62fb86b62679/src/vaults/AsyncRequestManager.sol#L553-L558
https://github.com/centrifuge/protocol-internal/pull/75/commits/27068057a18be7e12a47d3df3450e09f8985a9e0
https://github.com/centrifuge/protocol-internal/blob/34ff1f82806fb22680ef694eadca62fb86b62679/src/vaults/README.md#L11-L11

eyAudit Centrifuge v3.1 Fix Review

Recommendation
Update the README and diagrams to reference pool-specific escrow changes made.
Developer Response

Fixed by bd06cH2.

2.10.3 Missing event inside SubsidyManager

Technical Details

The SubsidyManager contract emits a WithdrawSubsidy event inside withdraw() but

not inside withdrawALL() .
Since both functions have similar behavior, with the main difference being that
withdrawAll() withdraws the entire available balance, it seems expected that it would also

emit the WithdrawSubsidy event.
Impact
Informational.

Recommendation

Emit WithdrawSubsidy event inside withdrawAlLl() .

1 function withdrawAll(PoolId poolId, address to) external auth returns (address,

uint256) {
2
3 refund.withdrawFunds(to, amount);
4 + emit WithdrawSubsidy(poolId, to, amount);
6 return (address(refund), amount);
7}

Developer Response

Fixed by 7934e82.

2.10.4 Missing nastpec documentation for extraGasLimit param in ISpoke.request

Technical Details

ISpoke.request now accepts an extraGasLimit parameter in order for callers to provide
an additional gas stipend for cross-chain execution.

The highlighted method’s natspec documentation is missing a description for the
extraGasLimit parameter.

https://github.com/centrifuge/protocol-internal/pull/75/commits/bd06c52ed3011c991fc1b43f9f79e46f50d7a208
https://github.com/centrifuge/protocol-internal/blob/34ff1f82806fb22680ef694eadca62fb86b62679/src/utils/SubsidyManager.sol#L42-L42
https://github.com/centrifuge/protocol-internal/blob/34ff1f82806fb22680ef694eadca62fb86b62679/src/utils/SubsidyManager.sol#L53-L53
https://github.com/centrifuge/protocol-internal/blob/34ff1f82806fb22680ef694eadca62fb86b62679/src/utils/SubsidyManager.sol#L53-L53
https://github.com/centrifuge/protocol-internal/blob/34ff1f82806fb22680ef694eadca62fb86b62679/src/utils/SubsidyManager.sol#L53-L53
https://github.com/centrifuge/protocol-internal/pull/75/changes/7934e8268c4489609e8d9ef5c1c678be16e4156b
https://github.com/centrifuge/protocol-internal/blob/34ff1f82806fb22680ef694eadca62fb86b62679/src/core/spoke/interfaces/ISpoke.sol#L236-L251

eyAUdit Centrifuge v3.1 Fix Review

Impact

Informational.

Recommendation

Add a description for the extraGasLimit to the highlighted method’s documentation.

Developer Response

Fixed by 740efd3.

2.10.5 Missing event emission in BatchRequestManager.setEpochIds

Technical Details

BatchRequestManager.setEpochIds implements functionality for a
BatchRequestManager ward to override values in epochId mapping during a migration

from V3’s ShareClassManager to V3.1’s BatchRequestManager .
The method could benefit from an event emission in order for off-chain components to be able
to track calls to the highlighted method.

Impact
Informational.

Recommendation

Define an EpochIdModified(PoolId pool) event and log it within the highlighted method:

1 @@ -94,9 +94,12 @@ contract BatchRequestManager is Auth, BatchedMulticall,
IBatchRequestManager {
2 ’

3 } .

5+ event EpochIdModified(PoolId poolId, ShareClassId scId, AssetlId assetld,
EpochId epochIdData);

6 +

7 /// @dev used only for migrations

8 function setEpochIds(PoolId poolId, ShareClassId scId, AssetId assetld,
EpochId memory epochIdData) external auth {

9 epochId[poolId][scId][assetId] = epochIdData;

10 + emit EpochIdModified(poolId, scId, assetId, epochIdData);

11 }

Developer Response

Fixed by 0Oeb5d40

https://github.com/centrifuge/protocol-internal/pull/75/commits/740efd3c2f69dc3d950fabe6f47b1078a494ba63
https://github.com/centrifuge/protocol-internal/blob/34ff1f82806fb22680ef694eadca62fb86b62679/src/vaults/BatchRequestManager.sol#L98-L100
https://github.com/centrifuge/protocol-internal/pull/75/commits/0eb5d404d56233f2e594b4b696f6908817f023b1

eyAudit Centrifuge v3.1 Fix Review

2.11 Final Remarks

The reviewed pull requests were found to correctly address the related issues identified within
the latest audit competition held by the Centrifuge team, uncovering a small set of issues
related with gas consumption optimization and code readability.

10

	Review Summary
	Protocol Overview
	Audit Scope
	Risk Assessment Framework
	Severity Classification

	Key Findings
	Overall Assessment

	Audit Overview
	Project Information
	Audit Team
	Audit Timeline
	Audit Resources
	Critical Findings
	High Findings
	Medium Findings
	Low Findings
	Gas Savings Findings
	Cache codebgreservedBy mapping to avoid duplicate storage reads
	Salt reuse check may be executed earlier to save gas in revert case

	Informational Findings
	Unused named return parameter in codebgAsyncRequestManager.maxMint
	Outdated README references global escrow
	Missing event inside codebgSubsidyManager
	Missing nastpec documentation for codebgextraGasLimit param in codebgISpoke.request
	Missing event emission in codebgBatchRequestManager.setEpochIds

	Final Remarks

